ID SWE1_YEAST Reviewed; 819 AA. AC P32944; D6VW03; DT 01-OCT-1993, integrated into UniProtKB/Swiss-Prot. DT 01-OCT-1993, sequence version 1. DT 16-OCT-2013, entry version 126. DE RecName: Full=Mitosis inhibitor protein kinase SWE1; DE EC=2.7.11.1; DE AltName: Full=Wee1 homolog; GN Name=SWE1; OrderedLocusNames=YJL187C; ORFNames=J0406; OS Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast). OC Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; OC Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces. OX NCBI_TaxID=559292; RN [1] RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], FUNCTION, AND PHOSPHORYLATION OF RP CDC28. RX PubMed=8253069; RA Booher R.N., Deshaies R.J., Kirschner M.W.; RT "Properties of Saccharomyces cerevisiae wee1 and its differential RT regulation of p34CDC28 in response to G1 and G2 cyclins."; RL EMBO J. 12:3417-3426(1993). RN [2] RP NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA]. RC STRAIN=ATCC 96604 / S288c / FY1679; RX PubMed=8641269; RA Galibert F., Alexandraki D., Baur A., Boles E., Chalwatzis N., RA Chuat J.-C., Coster F., Cziepluch C., de Haan M., Domdey H., RA Durand P., Entian K.-D., Gatius M., Goffeau A., Grivell L.A., RA Hennemann A., Herbert C.J., Heumann K., Hilger F., Hollenberg C.P., RA Huang M.-E., Jacq C., Jauniaux J.-C., Katsoulou C., Kirchrath L., RA Kleine K., Kordes E., Koetter P., Liebl S., Louis E.J., Manus V., RA Mewes H.-W., Miosga T., Obermaier B., Perea J., Pohl T.M., RA Portetelle D., Pujol A., Purnelle B., Ramezani Rad M., Rasmussen S.W., RA Rose M., Rossau R., Schaaff-Gerstenschlaeger I., Smits P.H.M., RA Scarcez T., Soriano N., To Van D., Tzermia M., Van Broekhoven A., RA Vandenbol M., Wedler H., von Wettstein D., Wambutt R., Zagulski M., RA Zollner A., Karpfinger-Hartl L.; RT "Complete nucleotide sequence of Saccharomyces cerevisiae chromosome RT X."; RL EMBO J. 15:2031-2049(1996). RN [3] RP GENOME REANNOTATION. RC STRAIN=ATCC 204508 / S288c; RG Saccharomyces Genome Database; RL Submitted (DEC-2009) to the EMBL/GenBank/DDBJ databases. RN [4] RP INDUCTION. RX PubMed=8647431; RA Ma X.-J., Lu Q., Grunstein M.; RT "A search for proteins that interact genetically with histone H3 and RT H4 amino termini uncovers novel regulators of the Swe1 kinase in RT Saccharomyces cerevisiae."; RL Genes Dev. 10:1327-1340(1996). RN [5] RP FUNCTION, AND INDUCTION. RX PubMed=8930890; RA Sia R.A.L., Herald H.A., Lew D.J.; RT "Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in RT budding yeast."; RL Mol. Biol. Cell 7:1657-1666(1996). RN [6] RP FUNCTION, PHOSPHORYLATION, AND INDUCTION. RX PubMed=9822611; DOI=10.1093/emboj/17.22.6678; RA Sia R.A.L., Bardes E.S.G., Lew D.J.; RT "Control of Swe1p degradation by the morphogenesis checkpoint."; RL EMBO J. 17:6678-6688(1998). RN [7] RP INTERACTION WITH MET30, AND DEGRADATION. RX PubMed=9716410; RA Kaiser P., Sia R.A.L., Bardes E.S.G., Lew D.J., Reed S.I.; RT "Cdc34 and the F-box protein Met30 are required for degradation of the RT Cdk-inhibitory kinase Swe1."; RL Genes Dev. 12:2587-2597(1998). RN [8] RP FUNCTION IN MEIOSIS, AND INDUCTION. RX PubMed=10619027; DOI=10.1016/S1097-2765(00)80390-1; RA Leu J.-Y., Roeder G.S.; RT "The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated RT phosphorylation of the cyclin-dependent kinase Cdc28."; RL Mol. Cell 4:805-814(1999). RN [9] RP FUNCTION, AND MUTAGENESIS OF LYS-473. RX PubMed=10454545; RA McMillan J.N., Sia R.A.L., Bardes E.S.G., Lew D.J.; RT "Phosphorylation-independent inhibition of Cdc28p by the tyrosine RT kinase Swe1p in the morphogenesis checkpoint."; RL Mol. Cell. Biol. 19:5981-5990(1999). RN [10] RP FUNCTION, AND INTERACTION WITH HSL7. RX PubMed=10490630; RA McMillan J.N., Longtine M.S., Sia R.A.L., Theesfeld C.L., RA Bardes E.S.G., Pringle J.R., Lew D.J.; RT "The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle RT control of Swe1p degradation by Hsl1p and Hsl7p."; RL Mol. Cell. Biol. 19:6929-6939(1999). RN [11] RP FUNCTION, AND INTERACTION WITH HSL7. RX PubMed=10490648; RA Shulewitz M.J., Inouye C.J., Thorner J.; RT "Hsl7 localizes to a septin ring and serves as an adapter in a RT regulatory pathway that relieves tyrosine phosphorylation of Cdc28 RT protein kinase in Saccharomyces cerevisiae."; RL Mol. Cell. Biol. 19:7123-7137(1999). RN [12] RP SUBCELLULAR LOCATION. RX PubMed=10805747; DOI=10.1128/MCB.20.11.4049-4061.2000; RA Longtine M.S., Theesfeld C.L., McMillan J.N., Weaver E., Pringle J.R., RA Lew D.J.; RT "Septin-dependent assembly of a cell cycle-regulatory module in RT Saccharomyces cerevisiae."; RL Mol. Cell. Biol. 20:4049-4061(2000). RN [13] RP FUNCTION. RX PubMed=11404321; RA La Valle R., Wittenberg C.; RT "A role for the Swe1 checkpoint kinase during filamentous growth of RT Saccharomyces cerevisiae."; RL Genetics 158:549-562(2001). RN [14] RP INTERACTION WITH HSL7. RX PubMed=11408575; RA Cid V.J., Shulewitz M.J., McDonald K.L., Thorner J.; RT "Dynamic localization of the Swe1 regulator Hsl7 during the RT Saccharomyces cerevisiae cell cycle."; RL Mol. Biol. Cell 12:1645-1669(2001). RN [15] RP INTERACTION WITH CDC5, AND SUBCELLULAR LOCATION. RX PubMed=11438652; DOI=10.1128/MCB.21.15.4949-4959.2001; RA Bartholomew C.R., Woo S.H., Chung Y.S., Jones C., Hardy C.F.; RT "Cdc5 interacts with the Wee1 kinase in budding yeast."; RL Mol. Cell. Biol. 21:4949-4959(2001). RN [16] RP FUNCTION. RX PubMed=11283616; DOI=10.1038/35070104; RA Harrison J.C., Bardes E.S.G., Ohya Y., Lew D.J.; RT "A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis RT checkpoint."; RL Nat. Cell Biol. 3:417-420(2001). RN [17] RP FUNCTION, SUBCELLULAR LOCATION, AND MUTAGENESIS OF 318-ARG--LYS-328; RP LEU-320; LEU-324; PHE-327; LYS-328; LEU-331; TYR-332; GLU-797; ILE-806 RP AND GLN-807. RX PubMed=12388757; DOI=10.1091/mbc.E02-05-0283; RA McMillan J.N., Theesfeld C.L., Harrison J.C., Bardes E.S.G., Lew D.J.; RT "Determinants of Swe1p degradation in Saccharomyces cerevisiae."; RL Mol. Biol. Cell 13:3560-3575(2002). RN [18] RP FUNCTION. RX PubMed=12593792; DOI=10.1016/S0960-9822(03)00049-6; RA Harvey S.L., Kellogg D.R.; RT "Conservation of mechanisms controlling entry into mitosis: budding RT yeast wee1 delays entry into mitosis and is required for cell size RT control."; RL Curr. Biol. 13:264-275(2003). RN [19] RP INTERACTION WITH KCC4. RX PubMed=12773812; DOI=10.1266/ggs.78.113; RA Okuzaki D., Watanabe T., Tanaka S., Nojima H.; RT "The Saccharomyces cerevisiae bud-neck proteins Kcc4 and Gin4 have RT distinct but partially-overlapping cellular functions."; RL Genes Genet. Syst. 78:113-126(2003). RN [20] RP FUNCTION. RX PubMed=12840070; DOI=10.1242/jcs.00634; RA Martinez-Anaya C., Dickinson J.R., Sudbery P.E.; RT "In yeast, the pseudohyphal phenotype induced by isoamyl alcohol RT results from the operation of the morphogenesis checkpoint."; RL J. Cell Sci. 116:3423-3431(2003). RN [21] RP FUNCTION IN FILAMENTOUS GROWTH REGULATION. RX PubMed=14565980; DOI=10.1091/mbc.E03-06-0375; RA Jiang Y.W., Kang C.M.; RT "Induction of S. cerevisiae filamentous differentiation by slowed DNA RT synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins."; RL Mol. Biol. Cell 14:5116-5124(2003). RN [22] RP PHOSPHORYLATION BY CDC28. RX PubMed=14574415; DOI=10.1038/nature02062; RA Ubersax J.A., Woodbury E.L., Quang P.N., Paraz M., Blethrow J.D., RA Shah K., Shokat K.M., Morgan D.O.; RT "Targets of the cyclin-dependent kinase Cdk1."; RL Nature 425:859-864(2003). RN [23] RP INDUCTION BY ETHANOL. RX PubMed=15118337; DOI=10.1271/bbb.68.968; RA Kubota S., Takeo I., Kume K., Kanai M., Shitamukai A., Mizunuma M., RA Miyakawa T., Shimoi H., Iefuji H., Hirata D.; RT "Effect of ethanol on cell growth of budding yeast: genes that are RT important for cell growth in the presence of ethanol."; RL Biosci. Biotechnol. Biochem. 68:968-972(2004). RN [24] RP PHOSPHORYLATION AT SER-36; SER-102; SER-111; SER-118; THR-131; RP SER-136; SER-156; SER-169; SER-225; SER-254; THR-280; SER-312; RP SER-379; SER-395; SER-438; SER-610; THR-629 AND THR-688. RX PubMed=15037762; DOI=10.1073/pnas.0400641101; RA Sakchaisri K., Asano S., Yu L.-R., Shulewitz M.J., Park C.J., RA Park J.-E., Cho Y.-W., Veenstra T.D., Thorner J., Lee K.S.; RT "Coupling morphogenesis to mitotic entry."; RL Proc. Natl. Acad. Sci. U.S.A. 101:4124-4129(2004). RN [25] RP SUBCELLULAR LOCATION. RX PubMed=15282802; DOI=10.1002/yea.1133; RA Sundin B.A., Chiu C.-H., Riffle M., Davis T.N., Muller E.G.D.; RT "Localization of proteins that are coordinately expressed with Cln2 RT during the cell cycle."; RL Yeast 21:793-800(2004). RN [26] RP FUNCTION, PHOSPHORYLATION AT SER-36; THR-45; SER-56; SER-63; SER-70; RP THR-74; SER-105; SER-111; SER-118; THR-121; THR-124; SER-127; SER-133; RP SER-136; THR-196; SER-201; SER-262; SER-263; SER-266; SER-284; RP SER-294; SER-345; THR-367; THR-373; SER-379; THR-384; SER-610 AND RP THR-692, AND INTERACTION WITH CLB2-CDC28. RX PubMed=16096060; DOI=10.1016/j.cell.2005.05.029; RA Harvey S.L., Charlet A., Haas W., Gygi S.P., Kellogg D.R.; RT "Cdk1-dependent regulation of the mitotic inhibitor Wee1."; RL Cell 122:407-420(2005). RN [27] RP FUNCTION. RX PubMed=16360682; DOI=10.1016/j.cub.2005.11.039; RA McNulty J.J., Lew D.J.; RT "Swe1p responds to cytoskeletal perturbation, not bud size, in S. RT cerevisiae."; RL Curr. Biol. 15:2190-2198(2005). RN [28] RP FUNCTION, AND PHOSPHORYLATION BY CLB2-CDC28. RX PubMed=15920482; DOI=10.1038/sj.emboj.7600683; RA Asano S., Park J.-E., Sakchaisri K., Yu L.-R., Song S., Supavilai P., RA Veenstra T.D., Lee K.S.; RT "Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in RT budding yeast."; RL EMBO J. 24:2194-2204(2005). RN [29] RP FUNCTION. RX PubMed=15956196; DOI=10.1073/pnas.0406987102; RA Hu F., Aparicio O.M.; RT "Swe1 regulation and transcriptional control restrict the activity of RT mitotic cyclins toward replication proteins in Saccharomyces RT cerevisiae."; RL Proc. Natl. Acad. Sci. U.S.A. 102:8910-8915(2005). RN [30] RP FUNCTION. RX PubMed=16571676; DOI=10.1091/mbc.E05-11-1093; RA Liu H., Wang Y.; RT "The function and regulation of budding yeast Swe1 in response to RT interrupted DNA synthesis."; RL Mol. Biol. Cell 17:2746-2756(2006). RN [31] RP PHOSPHORYLATION BY CLB-CDC28. RX PubMed=17614281; DOI=10.1016/j.cub.2007.05.075; RA Keaton M.A., Bardes E.S.G., Marquitz A.R., Freel C.D., Zyla T.R., RA Rudolph J., Lew D.J.; RT "Differential susceptibility of yeast S and M phase CDK complexes to RT inhibitory tyrosine phosphorylation."; RL Curr. Biol. 17:1181-1189(2007). RN [32] RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. RX PubMed=18407956; DOI=10.1074/mcp.M700468-MCP200; RA Albuquerque C.P., Smolka M.B., Payne S.H., Bafna V., Eng J., Zhou H.; RT "A multidimensional chromatography technology for in-depth RT phosphoproteome analysis."; RL Mol. Cell. Proteomics 7:1389-1396(2008). RN [33] RP PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-379, AND MASS RP SPECTROMETRY. RX PubMed=19779198; DOI=10.1126/science.1172867; RA Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O.; RT "Global analysis of Cdk1 substrate phosphorylation sites provides RT insights into evolution."; RL Science 325:1682-1686(2009). RN [34] RP IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS]. RX PubMed=22106047; DOI=10.1002/pmic.201100166; RA Starita L.M., Lo R.S., Eng J.K., von Haller P.D., Fields S.; RT "Sites of ubiquitin attachment in Saccharomyces cerevisiae."; RL Proteomics 12:236-240(2012). CC -!- FUNCTION: Protein kinase that acts as a negative regulator of CC entry into mitosis (G2 to M transition) by phosphorylating and CC inhibiting the mitosis-promoting cyclin B-bound CDC28 at 'Tyr-19'. CC SWE1-mediated inhibition of CDC28 acts in a cell size or CC morphogenesis checkpoint to delay mitosis in response to defects CC in growth, actin organization or bud formation. Inhibits the CC activity of B-type cyclins in replication initiation strongly for CC CLB2, moderately for CLB3 and CLB4, and there is no apparent CC inhibition for CLB5 and CLB6, correlating with the normal CC expression timing of those cyclins. Hyperphosphorylation and CC degradation of SWE1 when all checkpoint requirement are met CC releases CLB2-CDC28 from inhibition and allows for progression CC through the cell cycle. SWE1-dependent CDC28 phosphorylation is CC also required for pachytene arrest upon activation of the CC recombination checkpoint during meiosis. Also involved in the CC regulation of nitrogen starvation- and short chain alcohol-induced CC filamentous growth, or filamentous differentiation in response to CC slowed DNA synthesis. Can act both on serines and on tyrosines. CC -!- CATALYTIC ACTIVITY: ATP + a protein = ADP + a phosphoprotein. CC -!- SUBUNIT: Interacts with CLB2-CDC28. Partial hyperphosphorylation CC of SWE1 by CLB2-CDC28 stabilizes the ternary complex of SWE1 and CC CLB2-CDC28 and stimulates kinase activity of SWE1 in a positive CC feedback loop, maintaining CLB2-CDC28 in the tyrosine- CC phosphorylated state. Fully hyperphosphorylated SWE1 dissociates CC from CLB2-CDC28. Interacts with HSL7, KCC4 and MET30. CC -!- INTERACTION: CC Q00684:CDC14; NbExp=3; IntAct=EBI-18607, EBI-4192; CC P32562:CDC5; NbExp=4; IntAct=EBI-18607, EBI-4440; CC P13185:KIN1; NbExp=3; IntAct=EBI-18607, EBI-9716; CC -!- SUBCELLULAR LOCATION: Bud neck. Nucleus. Note=When SWE1 first CC accumulates in G1, it is localized to the nucleus. After bud CC emergence, a subpopulation is recruited to the daughter side of CC the mother-bud neck through HSL1 and its adapter HSL7, where it is CC susceptible to hyperphosphorylation and degradation. CC -!- INDUCTION: Expressed periodically during the cell cycle, with a CC peak in late G1. Transcriptional repression requires ZDS1. Protein CC accumulation is also periodic, peaking during S/G2 and declining CC prior to and during nuclear division of the unperturbed cell CC cycle. Stabilized during a checkpoint response in G2. Induced CC during meiosis. Induced by ethanol (at protein level). CC -!- PTM: Phosphorylated progressively by CLA4, CLB2-CDC28 and CDC5. CC CLA4-dependent phosphorylation occurs in late S phase, followed by CC phosphorylation by CLB2-CDC28 in early G2, when the levels of CC mitotic CLB2 increases. This phosphorylation is critical for CC triggering subsequent SWE1-CDC5 interaction and CDC5-dependent CC phosphorylation. The resulting cumulative hyperphosphorylation CC down-regulates SWE1 by targeting it for ubiquitin-mediated CC degradation. This stepwise phosphorylation is thought to be a CC mechanism to integrate the different checkpoint requirements CC before entry into mitosis. CC -!- SIMILARITY: Belongs to the protein kinase superfamily. Ser/Thr CC protein kinase family. WEE1 subfamily. CC -!- SIMILARITY: Contains 1 protein kinase domain. CC --------------------------------------------------------------------------- CC Copyrighted by the UniProt Consortium, see https://www.uniprot.org/terms CC Distributed under the Creative Commons Attribution (CC BY 4.0) License CC --------------------------------------------------------------------------- DR EMBL; X73966; CAA52150.1; -; Genomic_DNA. DR EMBL; Z49462; CAA89482.1; -; Genomic_DNA. DR EMBL; BK006943; DAA08619.1; -; Genomic_DNA. DR PIR; S40400; S40400. DR RefSeq; NP_012348.1; NM_001181620.1. DR ProteinModelPortal; P32944; -. DR SMR; P32944; 403-714. DR DIP; DIP-2410N; -. DR IntAct; P32944; 31. DR MINT; MINT-532694; -. DR STRING; 4932.YJL187C; -. DR PaxDb; P32944; -. DR PeptideAtlas; P32944; -. DR EnsemblFungi; YJL187C; YJL187C; YJL187C. DR GeneID; 853252; -. DR KEGG; sce:YJL187C; -. DR CYGD; YJL187c; -. DR SGD; S000003723; SWE1. DR eggNOG; COG0515; -. DR GeneTree; ENSGT00530000063230; -. DR HOGENOM; HOG000057137; -. DR KO; K03114; -. DR OMA; DFGMATH; -. DR OrthoDB; EOG486CN1; -. DR BioCyc; YEAST:G3O-31620-MONOMER; -. DR NextBio; 973496; -. DR PRO; PR:P32944; -. DR Genevestigator; P32944; -. DR GO; GO:0005935; C:cellular bud neck; IDA:SGD. DR GO; GO:0005634; C:nucleus; IDA:SGD. DR GO; GO:0005524; F:ATP binding; IEA:UniProtKB-KW. DR GO; GO:0046872; F:metal ion binding; IEA:UniProtKB-KW. DR GO; GO:0004674; F:protein serine/threonine kinase activity; IEA:UniProtKB-KW. DR GO; GO:0004713; F:protein tyrosine kinase activity; IDA:SGD. DR GO; GO:0051301; P:cell division; IEA:UniProtKB-KW. DR GO; GO:0000078; P:cell shape checkpoint; IDA:SGD. DR GO; GO:0000086; P:G2/M transition of mitotic cell cycle; IDA:SGD. DR GO; GO:0007126; P:meiosis; IEA:UniProtKB-KW. DR GO; GO:0007067; P:mitosis; IEA:UniProtKB-KW. DR GO; GO:0010697; P:negative regulation of spindle pole body separation; IMP:SGD. DR GO; GO:0000320; P:re-entry into mitotic cell cycle; IGI:SGD. DR GO; GO:0000079; P:regulation of cyclin-dependent protein serine/threonine kinase activity; IDA:SGD. DR GO; GO:0040020; P:regulation of meiosis; IMP:SGD. DR InterPro; IPR011009; Kinase-like_dom. DR InterPro; IPR000719; Prot_kinase_dom. DR InterPro; IPR017441; Protein_kinase_ATP_BS. DR InterPro; IPR008271; Ser/Thr_kinase_AS. DR Pfam; PF00069; Pkinase; 1. DR SUPFAM; SSF56112; SSF56112; 2. DR PROSITE; PS00107; PROTEIN_KINASE_ATP; 1. DR PROSITE; PS50011; PROTEIN_KINASE_DOM; 1. DR PROSITE; PS00108; PROTEIN_KINASE_ST; 1. PE 1: Evidence at protein level; KW ATP-binding; Cell cycle; Cell division; Complete proteome; Kinase; KW Magnesium; Meiosis; Metal-binding; Mitosis; Nucleotide-binding; KW Nucleus; Phosphoprotein; Reference proteome; KW Serine/threonine-protein kinase; Transferase; Tyrosine-protein kinase. FT CHAIN 1 819 Mitosis inhibitor protein kinase SWE1. FT /FTId=PRO_0000086727. FT DOMAIN 444 794 Protein kinase. FT NP_BIND 450 458 ATP (By similarity). FT COMPBIAS 88 96 Poly-Glu. FT ACT_SITE 579 579 Proton acceptor (By similarity). FT METAL 584 584 Magnesium; via carbonyl oxygen (By FT similarity). FT METAL 597 597 Magnesium; via carbonyl oxygen (By FT similarity). FT BINDING 473 473 ATP (By similarity). FT MOD_RES 36 36 Phosphoserine; by CDC5. FT MOD_RES 45 45 Phosphothreonine; by CDC28. FT MOD_RES 56 56 Phosphoserine; by CDC28. FT MOD_RES 63 63 Phosphoserine; by CDC28. FT MOD_RES 70 70 Phosphoserine. FT MOD_RES 74 74 Phosphothreonine; by CDC28. FT MOD_RES 102 102 Phosphoserine; by CDC5. FT MOD_RES 105 105 Phosphoserine; by CDC28. FT MOD_RES 111 111 Phosphoserine; by CDC5, CDC28 and CLA4. FT MOD_RES 118 118 Phosphoserine; by CDC5. FT MOD_RES 121 121 Phosphothreonine; by CDC28. FT MOD_RES 124 124 Phosphothreonine; by CDC28. FT MOD_RES 127 127 Phosphoserine; by CDC28. FT MOD_RES 131 131 Phosphothreonine; by CDC5. FT MOD_RES 133 133 Phosphoserine; by CDC28. FT MOD_RES 136 136 Phosphoserine; by CDC28 and CLA4. FT MOD_RES 156 156 Phosphoserine; by CDC5. FT MOD_RES 169 169 Phosphoserine; by CDC5. FT MOD_RES 196 196 Phosphothreonine; by CDC28. FT MOD_RES 201 201 Phosphoserine; by CDC28. FT MOD_RES 225 225 Phosphoserine; by CDC5. FT MOD_RES 254 254 Phosphoserine; by CDC5. FT MOD_RES 262 262 Phosphoserine. FT MOD_RES 263 263 Phosphoserine; by CDC28. FT MOD_RES 266 266 Phosphoserine; by CDC28. FT MOD_RES 280 280 Phosphothreonine; by CDC5. FT MOD_RES 284 284 Phosphoserine. FT MOD_RES 294 294 Phosphoserine. FT MOD_RES 312 312 Phosphoserine; by CLA4. FT MOD_RES 345 345 Phosphoserine. FT MOD_RES 367 367 Phosphothreonine; by CDC28. FT MOD_RES 373 373 Phosphothreonine; by CDC28. FT MOD_RES 379 379 Phosphoserine; by CDC5 and CLA4. FT MOD_RES 384 384 Phosphothreonine; by CDC28. FT MOD_RES 395 395 Phosphoserine; by CDC5 and CLA4. FT MOD_RES 438 438 Phosphoserine; by CDC5 and CLA4. FT MOD_RES 610 610 Phosphoserine; by CDC5. FT MOD_RES 629 629 Phosphothreonine; by CDC5. FT MOD_RES 688 688 Phosphothreonine; by CDC5 and CLA4. FT MOD_RES 692 692 Phosphothreonine. FT MUTAGEN 318 328 Missing: Impairs interaction with HSL7 FT and prevents bud neck localization and FT degradation. FT MUTAGEN 320 320 L->P,Q: Prevents degradation. FT MUTAGEN 324 324 L->S: Prevents degradation. FT MUTAGEN 327 327 F->S: Prevents degradation. FT MUTAGEN 328 328 K->E: Prevents degradation. FT MUTAGEN 331 331 L->I: Prevents degradation. FT MUTAGEN 332 332 Y->C: Prevents degradation. FT MUTAGEN 473 473 K->A,P: Loss of catalytic activity. FT MUTAGEN 797 797 E->K,V,G: Prevents degradation. FT MUTAGEN 806 806 I->T,A,N: Prevents degradation. FT MUTAGEN 807 807 Q->R,E: Prevents degradation. SQ SEQUENCE 819 AA; 92468 MW; F49FE73937958A02 CRC64; MSSLDEDEED FEMLDTENLQ FMGKKMFGKQ AGEDESDDFA IGGSTPTNKL KFYPYSNNKL TRSTGTLNLS LSNTALSEAN SKFLGKIEEE EEEEEEGKDE ESVDSRIKRW SPFHENESVT TPITKRSAEK TNSPISLKQW NQRWFPKNDA RTENTSSSSS YSVAKPNQSA FTSSGLVSKM SMDTSLYPAK LRIPETPVKK SPLVEGRDHK HVHLSSSKNA SSSLSVSPLN FVEDNNLQED LLFSDSPSSK ALPSIHVPTI DSSPLSEAKY HAHDRHNNQT NILSPTNSLV TNSSPQTLHS NKFKKIKRAR NSVILKNREL TNSLQQFKDD LYGTDENFPP PIIISSHHST RKNPQPYQFR GRYDNDTDEE ISTPTRRKSI IGATSQTHRE SRPLSLSSAI VTNTTSAETH SISSTDSSPL NSKRRLISSN KLSANPDSHL FEKFTNVHSI GKGQFSTVYQ VTFAQTNKKY AIKAIKPNKY NSLKRILLEI KILNEVTNQI TMDQEGKEYI IDYISSWKFQ NSYYIMTELC ENGNLDGFLQ EQVIAKKKRL EDWRIWKIIV ELSLALRFIH DSCHIVHLDL KPANVMITFE GNLKLGDFGM ATHLPLEDKS FENEGDREYI APEIISDCTY DYKADIFSLG LMIVEIAANV VLPDNGNAWH KLRSGDLSDA GRLSSTDIHS ESLFSDITKV DTNDLFDFER DNISGNSNNA GTSTVHNNSN INNPNMNNGN DNNNVNTAAT KNRLILHKSS KIPAWVPKFL IDGESLERIV RWMIEPNYER RPTANQILQT EECLYVEMTR NAGAIIQEDD FGPKPKFFI //